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An exposition of some methods of proving exponential (stretched exponential) 
decay of correlations is given. One-dimensional strictly hyperbolic and quadratic 
maps and two-dimensional piecewise smooth, uniformly hyperbolic maps are 
considered. The emphasis is on the fundamental constructions of the Markov 
sieve method due to Bunimovich-Chernov-Sinai and those of Liverani's Hilbert 
metric method. 
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1. I N T R O D U C T I O N  

The main objective of this paper is to outline the different techniques of 
proving exponential (or stretched exponential) decay of correlations of 
continuous observables under the action of the iterates of a map of an 
interval or some two-dimensional (not necessarily connected) domains. The 
general setup looks as follows: An "observable" means a real-valued func- 
tion f ( x )  on the phase space s#~  x which at least should be a topological 
space, in order to speak about continuous functions, but in fact we assume 
that s# is a Riemannian manifold. There is given a continuous or piecewise 
continuous map T on Jr having an invariant probability measure p; let E 
denote the expectation with respect to/~. We investigate the question of 
whether the rate of the convergence 

I E f ( x ) f ( T " x )  - (Ef(x))2l --* 0 

is exponential (or subexponential). The rate in principle depends both on 
f and on T, but usually we consider H61der continuous j~ then the question 
concerns only the nature of T. 
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This latter statement is one of the reasons allowing the proof of the 
central limit theorem: 

I ~ ( f ( T " x )  - Ef(x))  < t ~ ~ , ( t )  
k = l  

where ~ is the integrated Gaussian density with zero mean and 0 < a < ov 
standard deviation. 

However, a much deeper fact lies behind the central limit theorem, 
namely that the multiple correlation functions 

E f ( x )  f (  T" ' x )  f (  T"'-x) . . . f (  T"~x) 

tend to zero sufficiently fast if E f ( x ) = 0  and n j - n j _ ~  (17o=0) tend 
uniformly to co. 

We focus our attention on smooth or piecewise smooth hyperbolic 
maps of the interval, or a two-dimensional Riemannian surface having 
invariant measure absolutely continuous with respect to the Lebesgue or 
Riemannian measure. The interesting cases are, however, those for which 
either the hyperbolicity or the smoothness is violated. A typical example for 
the first case is the famous quadratic map of the interval, while the billiard 
map is the most challenging example for strictly hyperbolic maps among 
several cylinders with singularities. 

In the majority of cases instead of the map T itself one considers the 
Perron-Frobenius operator 7" acting on measures defined on Jr In the 
most general case the Perron-Frobenius operator can be defined as 
follows: 

Let T be a measurable map (not necessarily one-to-one) of a metric 
space ,/# endowed with a finite measure/~, usually not invariant under the 
action of T. The Perron-Frobenius operator 7" acts on the "space" of 
measures; it describes the evolution of the initial measure it under the 
action of T by the definition 

V Borel measurable A c .l/g: 7"ll(A) = ll( T -  'A)  

Recall that for usual Markov chains with countable states the decay of 
correlations and the rate of convergence of some initial distribution to an 
invariant one can be derived simultaneously from the spectral properties of 
the probability transition matrix whose analog is the Perron-Frobenius 
operator. 

Pollicot('9~ and Ruelle ~2~ developed an effective method of computing 
the Fourier transform of the correlation function (in fact the spectrum of 
the Perron-Frobenius operator) using the Fredholm determinant of the 
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map. The general Fredholm theory was worked out by Grothendieck. ~13~ 
The theory of Pollicott and Ruelle is based on the thermodynamic for- 
malism applied to dynamical systems--invented by R. Bowen, D. Ruelle, 
and Ya. G. Sinai--which is beyond the scope of this paper. 

There is an abundant literature on the numerical estimation of the rate 
of correlation decay; we refer to the recent paper of Garrido and 
Gallavotti.l~21 

Our purpose is more modest: to expose the Markov partition method 
of Sinai's school, and the method of the Hilbert metric due to C. Liverani. 
Both of them are attempts toward the proof of exponential correlation 
decay for billiards. 

The structure of the paper is as follows: in Section 2 we cite the recent 
result of L.-S. Young on one-dimensional quadratic map. Section 3 sum- 
marizes the theory of two-dimensional smooth (or smooth with singularities) 
hyperbolic maps. This section contains the common ingredients of the 
method of the Markov sieve and the method of the Hilbert metric treated 
in Sections 4 and 5, respectively. 

2. QUADRATIC M A P  OF INTERVAL 

Here we cite a recent result of Young 1271 concerning the quadratic 
map. for two reasons: (i) it is the simplest example where exponential 
correlation decay is established and the uniform hyperbolicity is violated; 
(ii) Liverani's ideas will be demonstrated on one-dimensional expanding 
maps. 

Consider the map J;, of [ - 1, 1 ] into itself defined by f , , (x)  = 1 - a x  2, 
The map f , ( x )  is not everywhere expanding; therefore the well-known 
theorem of Yakobson ~-'6'4~ stating that there is a positive Lebesgue measure 
set A in the parameter set such that if a e A, then fa has an absolutely con- 
tinuous invariant measure/ t  was a surprising achievement. Benedicks and 
Carleson c51 proved that for a positive measure subset A ' c A  the density 
function of the invariant measure is a sum of a function with bounded 
variation and a function having inverse square-root singularities. In this 
case the absolutely continuous invariant measure is unique, and the natural 
extension of ( f , ,  ll) is equivalent to the Bernoulli shift. 

Young's results concern the class offa  of the above type and state that 
if q~: [ - 1 ,  1]--* R has bounded variation, then there exists a constant 
0 < 2 < 1 depending only on a and another constant C depending on cp as 
well, such that 

IEcp(x) ~ o ( f " x ) -  (E~o(x))'-[ < C2" 



170 Kr~mli  

Both the proof of the existence and unicity of/~ and that of the decay 
of correlations are based on the investigation of the spectral properties of 
the Perron-Frobenius opertor y applied to the density ~o of a measure: 

)Tr.p(y)= ~ (p ( f - l y ) iD , . f - ~ x l  (1) 
x ~ f -  13, 

The difficulty caused by the nonuniform expanding can be overcome 
by constructing a partition of [ - 1 ,  1] into countable many intervals, 
shrinking exponentially around the critical point 0. For each interval I 
there exists a power pz such that the iterates f~t are uniformly expanding. 
The subtlety of this idea is to find the appropriate conditions which hold 
for a positive set of parameter values a and lead to the desired results. 

3. GENERAL INFORMATION ON T W O - D I M E N S I O N A L  
HYPERBOLIC SYSTEMS 

Definit ion 3.1 [Two-dimensional uniformly hyperbolic (Anosov) 
map]. Let J# be a compact, smooth, connected, orientable Riemannian 
surface with tangent bundle ,~,. and let T: o#--,,J# be a C'--diffeo- 
morphism. Assume that for every x e ~,# there exist two vectors v~(x) and 
v"(x) depending continuously on x, called, respectively, stable and unstable 
vectors at x such that 

D.,.Tv"(x) = 2(x) v"(x) 

D.,.Tv"(x) = 2'(x) v"(x) 

and there exist two positive constants 0 < 2  <lt  < 1 such that for every 
x e J / ,  ~.< I,~(x)l < z  and Ct-~< I2'(x)[ < 2  -~ 

Further we assume that the angle between the tangent vectors v"(x) 
and v"(x) is uniformly bounded from below (uniform transversality). 

For the sake of definiteness we assume that ,/g is homeomorphic to 
the 2-torus. 

The simplest example for Anosov maps is the algebraic automorphism 
of the 2-torus: 

Definition 3.2. L e t J / : = { ( x , y ) l O < ~ x , y < l }  b e a 2 - t o r u s a n d T  O 
be defined by To(x, y) = (ax + by, cx + dy) mod( 1 ), where the matrix 

A_-(: 
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has integer entries det A = _  1, and both eigenvalues of A are real and 
: / :_  1. Obviously for every x e  J#, vS(x) [v"(x)] is tangent vector parallel 
to the eigenvector v" (v") belonging to the eigenvalue I)-I < 1 (I,~-~1). 

Having the prototype of the two-dimensional maps considered in this 
paper before defining the other ones, we briefly recapitulate the standard 
constructions and facts needed to study the ergodic properties of two- 
dimensional hyperbolic maps. 

3.1. Invar iant  S tab le  ( U n s t a b l e )  Fibers 

Proposi t ion  3.3. For all x e J #  there exist two C 1 smooth curves 
K]. and ?.~. tangent to tr"(x) and v"(x) passing through x tangent to v"(x) and 
v"(x), respectively, such that T~,. c y"7..,, and T -I  L,." c Y r-'_,-" ~ 

The stable (unstable) fibers of an Anosov map are everywhere dense in 
.fig (transitivity); for our purposes it is more convenient to work with local 
fibers of length e, and the choice of e depends on the Riemannian metric 

t l ,  [OC .$' It only: K~: ~~162 (L,- ) is a subinterval on ),.,. (L,-) of arc length (measured by the 
Riemannian metric) 2e with center x. If e is small enough, then for every 

u,  I o r  pair x, y e ~# there exists at most one z e J / s u c h  that - e  yi~:t~ ca y:. . 
Define [ x , y ]  by setting z := [x, y ]  if - exists. If x and y are suf- 

ficiently close to each other (measured by the arc length of the geodesic 
connecting them), then the four points of J4: x, [x, y] ,  y, [y ,  x]  define a 
quadrilateral Q whose sides are local stable and unstable fibers; see Fig. 1. 
{In the sequel, hoping not to cause confusion, we omit the superscript "loc" 
in the notation of local fibers). There are two canonical isomorphisms 

[Y'z]~O(z,  ) 

z' \[~,y] 

Fig. 1. Local stable and unstable manifolds. Canonical isomorphisms. 
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between the opposite sides of Q, namely the projection along the local 
stable (unstable) fibers: 

x'eF;--,~"(x') : =  ylt, n y},,_,.j 

if x' is between x and [x, y]  on y~. and 

x " ~ y . ' - , ~ ' ( x " )  " ~' n ~ , "  �9 = Yx" [x. y] 

i fx"  is between x and [y,x]  on L'. 
Notice that in the simplest case (algebraic automorphism of the 

2-torus) the stable (unstable) fibers of To are infinite straight lines (dense 
in J#) parallel to the eigenvector v" (v"). 

D e f i n i t i o n  3.4. A subset Q c . #  is called a parallelogram iff for 
every x, y e Q, [x, y]  e Q. Set y . . . . . . . .  .,.,Q := y., c~ Q and L,-,Q-= L, -c~ Q. 

R e m a r k .  If T is an Anosov map, then the quadrilateral Q defined 
by x, Ix, y], y, [y ,x]  is a parallelogram. We shall call such a 
parallelogram "full." The pieces of local fibers x, [x, y]  and [y,  x],  y are 
called s-sides of Q, while x, [y, x]  and [x,y], y are called u-sides of Q. 

3.2. Invar ian t  M e a s u r e  

The above definition has only topological character. The existence of 
an absolutely continuous--with respect to the Riemannian volume--in- 
variant probability measure should be postulated. To clarify the develop- 
ment of ideas, we recall that if such a measure exists, then it coincides with 
that constructed by SinaP 22~ using Markov partitions (Bowen-Ruelle-Sinai 
measure). 

On the other hand, the algebraic automorphism of the 2-torus preserves 
the Lebesgue measure. 

In a recent paper Pesin 1~8~ constructed a measure analogous to the 
Bowen-Ruelle-Sinai measure for dynamical systems with generalized 
hyperbolic attractors, like Lorentz-type and Lozi attractors. All the 
ingredients of the proof of stretched exponential correlation decay are 
established there�9 

Given an invariant measure for T, we can formulate the ergodic 
properties of uniform hyperbolic maps: 

P r o p o s i t i o n  3.5. Uniform hyperbolic maps are ergodic with 
respect to p, obey the K-property (Kolmogorov mixing 122"23), and are 
equivalent to the Bernoulli shift. (7) 
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The most effective technique to prove ergodicity (more precisely, the 
fact that the phase space is a countable union of positive ergodic com- 
ponents) is Hopf's method, based on the absolute continuity (with respect 
to the arc length measure) of canonical isomorphisms n" and n'~. ~'-''-~ 

3.3. Two-Dimensional Uniformly Hyperbolic Map with 
Singularities 

Definition 3.6 (UHS map). Let J / b e  the union of a finite number 
of compact, smooth, orientable Riemannian manifolds with C'--smooth 
boundaries (in the course of this paper J / i s  considered to be the union of 
a finite number of squares or cylinders). Assume that ~# is partitioned in 
two ways into unions of equal numbers of boxes, 

~ = ~ u . . . u ~ = ~ F u . . . u ~  

Two boxes of one partition can overlap at most on their boundaries, i.e., 

.:uS  :u?=oJu?  o.Jg? 

The map T is defined separately on each box Jg,.+, i =  1 ..... m. It is an 
Anosov map in the sense of Definition 3.1 of the interior of each ./#~+ onto 
the interior ,/g,, i = 1 ..... m. 

For more details concerning UHS maps we refer to the classical 
monograph of Katok and Strelcynt~4~; for recent results we suggest the 
paper of Liverani and Wojtkowski. I ~v~ 

Chernov's examples--piecewise linear hyperbolic automorphisms 
(PLH; for definition see below) belong to this class of maps, while for the 
Poincar6 section of the Sinai billiard flow with finite horizon the inequality 
2(x) ~<p fails: if x tends to the boundary O J/+ then 2(x) --* oo. 

Formally T is not well defined on the set of points which belong to the 
boundaries of several plus-boxes: it has several values. We adopt the con- 
vention that the image of a subset of Jg under T contains all such values. 

Let us introduce the singularity sets SO+ and SO-: 

SO+ = {x~ J# I x belongs to at least two of the boxes . :#+, i = 1 ..... m} 

The plus-singularity set S ~ + is a closed subset, and T is continuous on 
its complement. Similarly T-1  is continuous on the complement of 5" - .  

Definition 3.7 (PLH map). Let To be a hyperbolic algebraic 
automorphism of a 2-torus J / .  Let us cut the torus J /  along several 
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compact curves which are either closed or have common endpoints. These 
curves divide the torus into several pieces. We assume that these pieces can 
be shifted or rearranged in such a way that they fully cover the torus J// 
again. As a result we get a piecewise linear transformation of s#. 

For example, if To is the map defined by the matrix 

a 1§ 
with real a, then T =  T O is a piecewise linear transformation of s# con- 
sisting of a finite (countable) number of continuous pieces if a is rational 
(irrational). 

Denote by ,5: the set of the above cut curves, and for every integer n 
set ~ , = T " 6 : : T "  ( T - " )  are undefined and discontinuous on 6:_,,+~ 
(~,,-l).  Set ~,,,,,,=S(,,w ... w3,~,,. Now, T and its (positive and negative) 
iterates are defined on Jlo = j///\c:_ ..... and they preserve the Lebesgue 
measure. 

3.4. Billiard 

For the sake of simplicity, instead of a comprehensive description of 
the billiard systems we give the definition of the simplest billiard system 
with finite horizon on the 2-torus. 

Definition 3.8 (Billiard map). The configuration space of the 
billiard flow can be obtained from a 2-torus by discarding a finite number of 
open convex domains Si (scatterers) with smooth boundaries. Assume that 
the scatterers are placed on the torus in such a way that no infinite straight 
line could be drawn on the configuration space (see Fig. 2a). A point particle 
is moving with unit velocity in te interior of the configuration space, and 
it reflects at the boundary according to the law: the angle of reflection is 
equal to the angle of incidence. This motion T, is called billiard flow. 
T, preserves the product of Lebesgue measure on the configuration space 
and the Haar measure of the unit circle of possible velocities. (Notice that 
on the boundary, only a half-circle of velocities is admissible.) The billiard 
map T is the discretization (a natural Poincar6 section) of T,: T brings an 
outgoing vector "just before reflection" into an outgoing vector "just after 
the next reflection." T is well defined for all outgoing vectors except the 
tangential ones to the scatterers. The phase space s# of T consists of 
several cylinders (the boundaries OSi of the scatterers x ( - n / 2 ,  n/2); the 
angle q~ is measured from the outer normal of the scatterer; see Fig. 2b). 
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Fig. 2. (a) The billiard flow. (b) The billiard map. 

Denote by 6 e the union of the boundaries (~0 =-I-~/2) of cylinders, 
and for every integer n set ~, ,= T"6e: T" ( T - " )  are undefined and discon- 
tinuous on 6'L,,+1 (~ ,_ , ) .  Set 6e~., ,=~,u .. .  w~, , .  Now, T and its 
(positive and negative) iterates are defined on Jr J / \6e_~  .~ and they 
preserve the absolutely continuous measure with respect to the Lebesgue 
measure, having density function equal to const x cos ~p. 

Proposition 3.9. The billiard map is ergodic, obseys the 
K-property ~241 (Kolmogorov mixing), and is equivalent to the Bernoulli 
shift.l'l~ 

Remark. All the singular hyperbolic systems considered in this 
paper obey the following property: the maximal number M(n) of smooth 
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lines belonging to I J7 . . . .  Ti6 e -  that intersect at one point has polynomial 
growth. In fact for Liverani's proof it will be sufficient that in the case of 
the UHS map there exists an appropriate exponent 0 < ( < 1 and a natural 
number no such that 

M(no)2-r176 < const (2) 

One of the main difficulties arises from the fact that Proposition 3.3 
does not hold for singular systems; however, for almost every point x E ~,# 
there are local stable and unstable fibers (y~. and y~) passing through it, but 
no a priori lower bound for their lengths exists. Let us denote by r"(x) 

" (" ") The following proposition holds: [ r ' ( x ) ]  the length of y.,. L,-. 

Proposition 3.10. There are two positive constants C and 0c~< 1 
such that ll{x:r""(x) <e} ~< Ce ~. 

Notice that for the piecewise linear hyperbolic automorphisms ~ = 1. 
Due to Proposition 3.10 the canonical projections n" and n" can be 

defined for pairs of close stable (unstable) local fibers, say y~. and 7.,". (7'.'. and 
7~',) if x and y are sufficiently close and rS(x) and r"(y) [r'(x) and r" (y) ]  
are sufficiently large. The canonical projections will be defined only for a 

s ( . , , )  positive subset (with respect to the arc length measure) of 7x L,- �9 None- 
theless, they are absolutely continuous, which ensures that the positive 
ergodic components of T are of full measure and that T has the K-property 
and is equivalent to the Bernoulli shift on each such component. This last 
statement is true for the billiard map, too. 

Observe that Definition 3.4 is meaningful also in the case of the UHS 
map. A parallelogram usually will be a two dimensional Cantor set in this 
case. 

A fiber 7 ~ (7") intersects a square G properly iff 7"c~ G (7"c~ G) is an 
inner subinterval of 7 s (7"). 

D e f i n i t i o n  3.11. Let Q be a quadrilateral whose boundary con- 
sists of four local fibers; then A(Q) consisting of the intersections of local 
stable and unstable fibers properly intersecting Q is called the maximal 
parallelogram inscribed in Q. 

In order to prove that a UHS map T has only one ergodic component, 
the so-called Sinai fundamental lemmal~-5"lS~--stating, roughly speaking, 
that Q c Jr can be covered by sufficiently small squares the overwhelming 
majority of which contain an abundance of stable fibers--is inevitable. 

Sinai's L e m m a .  A square G is called 0c-connecting iff the measure 
of the maximal parallelogram inscribed into G is at least ~ times the 
measure of G. For each square Q of diameter 6o, t > 1, and e > 0 there exist 
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eQ< 1, Oe,.< ~ 0, and a natural mQ such that, for each e~<eQ, m>>.mQ, and 
0~ ~< 6 e we can construct a covering f#(Q, 0t, m) made of squares of size t01 
with the following properties: 

(i) The number of squares G for which Ul,,l<-,,e T"5/" :~ G= ~ and 
G is not e-connecting is less than e6 ~ 1. 

(ii) For each ?: with arc length at least 20~ and y c Q ,  there exists 
Ge fg(Q, O~, m) such that 9: ~ G and ), intersects properly G. 

Remark. Statement (i) means that the total measure of not 
e-connecting squares has order o(6~). 

4. M E T H O D  OF M A R K O V  SIEVE 

4.1. Pre l iminar ies  

Now we give the definition of the Markov sieve for general measure- 
preserving maps of compact metric spaces. 

Definit ion 4.1. Let T be a map of a compact metric space ~/// 
preserving the probability measure it. A sequence of partitions ~,.:: := 
{Ao, A1 ..... A1}, where l - - l ( n , N ) ,  # ( A i ~ A j ) = O  for iv~j, and 
l t(J/l\U~=oAi)=O, is called a Markov sieve with parameters C1>0,  
Ca > 0, and 1 > C 3 > 0 if the following four properties hold: 

Property G1 (Sizes). diam(Ai)~<e-" for i= l , . . . , I  (Ao is excep- 
tional). 

Property G2 (Measure of marginal set). /L(Ao) <~ Ne-".  

Property G3 (Markov approximation). For arbitrary natural num- 
bers k > l > l  and 1 , . < i l < i z < . . .  <ik<~N and for arbitrary indices 
Jl ,J2 ..... Jk e { l ..... I} 

#(Ti'Aj, n Ti'-Aj,_ n .. .  ~ T~-'A:~_, [ T~ .. .  T~kAj~) 

=lt( T~'Aj~ n Ti2Aj._n .. .  c~ TO-'Ajt_, [ T;tAjl)(1 +6)  

where 0 ~< e-.C'". Set 

R(i, k):--- { j i l t (  TkA, n A j)>t C2lt(A i)]./(Aj) } 

Property G4 (Regularity). If k ~> C3rt  , then 

I.t(Aj)> l - e - "  (3) 
jE R(i,k) 
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Remark. The last condition means that the mixing property for k 
steps provided by inequality (3) holds for "almost all" pairs Ai, A je~ , .u .  

The following proposition on the convergence to the equilibrium is the 
analog of the classical Markov theorem and its proof can be carried out 
using properties G1-G4 only. 

Proposit ion 4.2. Set L=(i t+~-i t ) / (2Czn) .  For every k > l > l  
and 1 ~< ix < i2 < .-- < it ~< N there exists a set R.(i] ..... it) of ( k -  l)-tuples 
of indices and a constant C4 > 0 such that 

Ip(TiJAj, n Ti2Ajzn ... n Tit- lAj/_,  [ T~ ... Ti*Aj,) 

- p (  Ti'Aj, n Ti'-Aj,.c~ ...  n To-'Ajt_, [ TitAjt)[ < (~1 

where 51 <max(e  - c ' ' ,  (1 - C3)c). 

Remark. Usually N >  n; if the typical value for (i/+1 - i t )  is of order 
N, then the rate of the convergence to the equilibrium is determined by 
(N/n). The estimation for the decay of correlations can be derived from 
Proposition 4.2. Assume that a function F(x), x ~ J/l, is H61der continuous 
with exponent 0c and EF(x)=  0. 

4.2. Decay of Correlations 

Averaging F(x) on the elements Aj of (ffn, N, We get a simple function 
P(x), generating a stationary stochastic process: X" k = p(T tx )  (of course ~'t 
is defined for k~  { 1 ..... N} only). Properties G1 and G2 and the H61der 
property of F(x) imply 

IEF(x) F(TNx) - E~'o ~'N I ~< C(F) y(~)" 

C(F) depends only on F, and 7(a)" depends only on the exponent in 
the H61der condition. Denote by f,. the value of F(x) on A;~ ft,.^,. Then 

1 1 

E~'oX'N= ~ f J f l z ( A , n A j ) =  ~, Afjp(A~ [ Aj)It(A.i ) 
i,j=O i,j=O 

Proposition 4.2 implies that for N >  n 2 

I 

E~'o.X'N = ~ f i f j l l ( A i )  lA(aj) -b O()'[) (4) 
i,j=O 

for some 7~ < 1. This last estimation proves the "conditional" theorem. 
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Theorem 4.3. If for a measure-preserving map T on a compact 
metric space J4' a Markov sieve ~,.u can be constructed with index rates 
n 2 =N,  then every H61der continuous function F obeys a stretched 
exponential correlation decay with the speed C(F) exp(- , j -n) ,  where the 
constant C(F) depends only on F. 

N. Chernov constructed a more effective Markov sieve for the PLH of 
the 2-torus, making it possible to prove exponential decay of correlations 
under the action of the map for every H61der continuous function. Here we 
give Chernov's definition also in an abstract form, disregarding the nature 
of the sets of the sequence of the partitions entering the definition. 

Definition 4.4. Let T be a piecewise linear hyperbolic map of the 
2-torus. A sequence of partitions fr := {Ao, AI ..... AI}, where I=I(n), 
lt(Ai c~ A j) = 0 for i 4= j, and l l (J t ' \U ~= 0 A ;) = 0, is called a Markov sieve 
with parameters C1 > 0 and C2 > 0 if the following four properties hold: 

Property G' 1 (Sizes). diam(A;) ~< e -"  for i = 1 ..... I (Ao is excep- 
tional). 

Property G'2 (Measure of marginal set). it(Ao) <~ C~e -c'-" 

Property G'3 (Exponential mixing for A,. ~ ~,,.N): 

fl( Tk  A i ~ A j) >~ fl( A i) lt( Aj)(  1 - -  C1 e -C ' -" )  

Property G'4 (Exponential mixing for a fixed parallelogram A). 
There exists a parallelogram A r f#, independent of 17 such that 

lt(TkA h A )  >~It(A) 2 (1 -- Cle -c'-") 

Notice that the uniform bound in Property G'3 is a consequence of the 
existence of the parallelogram A and of the property G'4. Now property 
G'2 implies the inequality 

! 

E.~'o.~',, = ~'. fiffl2(Ai) Ix(Aj) + 0(7' 0 
i.j~O 

analogous to inequality (4), but here we have N = n .  Thus the following 
theorem is proven: 

Theorem 4.5. Let T be a PLH of a 2-torus. Then for every H61der 
continuous function, F obeys exponential correlation decay with speed 
C(F) e -c-", where C 2 depends only on T, while C(F) depends on T and F. 
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4 .3 .  T h e  I d e a  o f  C o n s t r u c t i n g  M a r k o v  S i e v e s  

Definitions 4.1 and 4,4 contain no information on the nature of the 
elements A ie ~,,.N (or e ~,,) except their measurability. The Markov sieves 
for the corresponding systems are constructed by Bunimovich et  al. t8"9) and 
Chernov.t 1ol The idea of constructing a Markov sieve via a Markov partition 
comes from the Adler and Weiss ~'~ construction of a Markov partition for 
the algebraic automorphism of the 2-torus consisting of two parallelograms 
A~ and A2 (see Fig. 3: A, is filled with o's, A2 is filled with x's). 

We suggest that the reader study this elementary geometrical picture 
after having read the general definitions of the Markov partition and the 
Markov sieve. 

It is easy to check that the connected pieces of the refinements of the 
Adler-Weiss partition satisfy all requirements of both definitions of 
Markov sieves. In fact, using these partitions, one can encode the map T 
into the usual irreducible aperiodic Markov chain with finite state space. 
Hence the name "Markov partition." 

While the abstract definition of Markov sieves is based on the exist- 
ence of a metric and an invariant (under the action of T) measure defined 
on J#, the definition of Markov partition requires finer topological struc- 
ture, namely the existence of local stable and unstable fibers. This definition 
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The Adle r -Weiss  cons t ruc t ion  for .4 = (2 [ I  1 ). Fig. 3. 
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has purely topological character, the main task here--after  construction 
of a Markov parition (or a weakened variant of i t - - the so-called pre- 
Markov parti t ion)--is to convert the topological conditions imposed on 
the Markov partition or pre-Markov partition into appropriate measure- 
theoretic properties. The first result in this direction was achieved by 
Sinai/n'23~ His construction for Anosov maps lies at the core of all con- 
structions; therefore we shall summarize Sinai's idea. 

Before doing this, we give the definitions of Markov partition and pre- 
Markov partition. 

D e f i n i t i o n  4.6 (Markov partition). A partition fr of the phase 
space J# into parallelograms of an Anosov map (or a UHS) is Markov iff 
it consists of a finite or countable number of parallelograms Q, such that 
for almost every x e Jr 

and 

T S C s 
~x .Q- -  ~)T.v,Q 

- -  1 u u T ?-,.Q ~ Y r-'.,'. O 

(For the notation Ty~;.Q and Ty',Q see Definition 3.4.) 

Notice that if c~ is a Markov partition for T" for some n, then the 
common refinement f#w T g u  . . - u  T"-~f# of the iterates of f# is a 
Markov partition for T, too. 

If one can construct Markov partitions whose elements are "full" 
parallelograms, then the Markovian condition can be formulated in a way 
that is easy to check. 

Set 

O'~ff = U stable sides of Q; 
Ai ~ 

0"fr = (.J unstable sides of Qf 
Aie~ 

The partition ff of full parallelograms is Markov if and only if T0Sff _ 
0"~ ( T-10"fg ~_O"fg). 

D e f i n i t i o n  4 .7  (Pre-Markov partition). Let f# be the parition of 
the phase space J /  of a singular hyperbolic (UHS, PLH, billiard) into 
polygons Q; whose boundaries consist of local stable and local unstable 

822/83/1-2-13 
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fibers and eventually of singularity lines. As in the definition of Markov 
partition of full parallelograms, set 

0"N = U stable sides of Qi 

0"N = U unstable sides of Qi 

(Notice that a polygon Q,. may have more than two stable (unstable) 
sides.) The partition N I''~ is pre-Markov of index n iff: 

(i) The polygons nonadjacent to 6 e ..... are quadrilaterals. 

(ii) We have 

TO"f~ c_ O"N 

and 

T -  l O"c~ ~_ O"N 

Observe that there is no condition imposed on the boundaries of Q~ being 
parts of 6 e_ ..... 

4.4. Idea of Sinai's Construction 

First take an initial partition No of .//r into a finite number of suf- 
ficiently small quadrilaterals Q; whose sides are local stable and unstable 
fibers. A point x e J# is a double point of the boundary of the partition if 
it belongs to the intersection of a stable (unstable) side of a quadrilateral 
Q,. and an unstable (stable) side of another quadrilateral Q;; see Fig. 4. We 
assume that the double points divide the boundaries of the quadrilaterals 
"regularly." 

Using the notations of Fig. 4, this means that there exists a universal 
constant ~ such that 

arc length(a, x) 
6 < arc length(x, b) < ~ -  

If n and therefore the expansion coefficient 2" of T" is large enough, 
then the regularity of N0 provides that the following construction is 
realizable. Take a stable side, say ~a,b, of a QeNo (see Fig. 4). T"y,.b will 
be a small piece of a stable fiber; project it by rt" into the closest stable side 
of No, say )',..a (if it is impossible, elongate )',..,i a bit, as in Fig. 4). Denote 
by )'c'.a' this projection. Due to the contraction in the unstable direction of 
the map T - l ,  T-"y,.,.a, will be 2" times closer to Y~.b than T"y~.b will be 
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I T-n'/< ~' J 

Fig. 4. 

I 
I 

--~1____ Tn%,b 

The Sinai construction. 

to Y,.'.a'. Thus we can modify ~#o in such a way that a piece of stable fiber 
having a great common part with T-"y,.,a, replaces Y~.o, but the structure 
of parallelograms Q;, namely the regularity of double points, is preserved. 
Carrying out this procedure for all s-sides in ~#o, we get a partition G~ for 
which the maximum distances of the type T"y,,.b will be 2" times closer to 
the closest stable side than it was in fgo. Iterating this procedure in the 
limit, we get a regular partition G'~. satisfying the Markov condition imposed 
on the s-sides of a partition consisting of full parallelograms. Repeating the 
above construction for the u-sides results in a Markov partition. 

The above idea can be used for constructing pre-Markov partitions of 
index n for PLH and billiard maps. The effectiveness of Sinai's construction 
is enhanced by the fact that the starting partition for pre-Markov partitions 
consists of polygons having only approximate fibers as s-sides (u-sides). 
Nonetheless the iteration procedure transforms them into real local fibers. 

Now we l~riefly summarize the idea of transforming a sequence of pre- 
Markov partitions into a Markov sieve. 

Letting the index n tend to infinity and choosing the diameters of 
the polygons in ffl"~ less than e-", one can achieve that the total measure 
of adjacent polygons is less than Fl(Ao)<-..Ne-" (for the billiard map) or 
less than ll(Ao)<~C~e -c'-'' (for the PLH map--here one should keep a 
quadrilateral of fixed size). The proof uses the structure of singularity lines. 
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Now set A~e N,, i >  O, the maximal parallelograms A(Qi) for nonadjacent 
quadrilaterals of f#~"l. Since the expansion rate is not uniformly bounded 
from above, much more technical difficulties arise for proving that 
P(~', \[.);> 0 A~) has the same order for both types of pre-Markov partitions. 

5. M E T H O D  OF HILBERT METRIC  

This section is devoted to a summary of Liverani's recent paper I ~6~ on 
the Hilbert metric method for proving correlation decay. 

For this method the natural object is the action of the Perron- 
Frobenius operator on the density function g(x) of/ t  [g(x) is the Radon- 
Nikodym derivative oflt with respect to some dominating measure P0]. In 
general there is no simple formula for T, but if T is invertible and measure 
preserving, then ~': L),0(J#)---, L),o(J#) is given by 

l"g(x) = g (T - l x )  

Recall that formula (1) (Section 1) describes the action of the Perron- 
Frobenius operator on the density function in the case of a one-dimen- 
sional (noninvertible and non-measure-preserving) map Tx, x ~ R: 

~g(y)= ~ g(T-~y)[D,.T-~x[ (5) 
x~ T - l y  

It is natural to expect that the two types of statements can be derived 
simultaneously by the same method for more general dynamical systems, 
too. Liverani carried out this program completely only for a special class 
of uniformly expanding maps of the unit interval. In this section we 
illustrate Liverani's method on the hyperbolic map of the unit interval, and 
we try to demonstrate how it works for Anosov maps and UHS maps. In 
both cases the existence of an invariant measure absolutely continuous with 
respect to the Riemannian are is assumed, together with the complete 
arsenal of the theory of hyperbolic systems (the mixing property and some 
standard constructions, including Sinai's lemma cited in Section 1 ). Now 
we turn to the definition of the Hilbert metric following Birkhoff. 16~ 

Consider a topological vector space V with a partial ordering 
defined via a closed convex cone cg c V (u, v ~cg implies that for all 0~ > O, 
fl > O, o~u + fly e ~; by convention u = 0 r cg): 

f ~ g , ~ g - - f  ~cgu {0} 

It is then possible to define a projective metric O (Hilbert metric) in 
by the construction 
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or(f, g) = sup{ 2 e R + I 2 f ~  g} 

fl(f, g) = inf{/.t e R + ] g ~/zf} 

fl(f, g) O(f, g) = log [ ~(----~, g)] 

where we take ~ = 0 and fl = c~ if the corresponding sets are empty. 
Clearly, for all a > 0 ,  f l>0 ,  O(ctf, fig)= O(f,g) (see Fig. 5). 
At the core of the proof of the correlation decay for any type of map 

lies the following "contraction principle." 

Theorem 5.1. Let V~ and V 2 be two vector spaces and T: V~ ~ V2 
be a linear map such that T(cG)=c~ z for two given closed convex cones 
cg~ c V t and ~z = V2. Let O~ be the Hilbert metric corresponding to the 
cone %. Setting 

A =  sup O2(f,g) 
f ,  gET("~l) 

we have 

[ tanh( oo ) = 1 ]. 

Notice that if T(C~) c cg2, then it follows that O2(Tf, Tg) < O~(f, g). 
However, a uniform rate of contraction depends on the diameter of the 
image being finite. 

Of course the contraction of the Hilbert metric itself does not ensure 
any convergence in the metric needed to estimate the rate of the correlation 

Fig. 5. The Hilbert metric. 
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decay. The following lemma is a candidate to solve this problem, but  in the 
most  interesting cases, the cone of  functions considered is ra ther  com- 
plicated, and the lemma is not  applicable. 

[ .emma 5.2.  Let [[.l[ be a norm in V, and suppose that, for each 
f g E V ,  

- f  ~ g ~ f  =~ Ilfll >/I[gll 

Then, given f ,  g ~cg c V for which ]l fl] = ][gll, 

I I f -  gll ~ ( e~ 1) IIf[I 

We now illustrate the method.  

5.1. The Simplest Uniformly Expanding Map of the Unit 
Interval 

Let 11, 12 be two closed intervals such that  11 wI2= [0,  1], 11 h i 2 =  
Oil nOI2, and T;: I i ~  [0, 1], one to one and onto,  such that Tie CI2J(Ii) 
and DT~>~2> 1 ( i =  1,2). Define the map as follows: 

T(x) ~ Tl(x) if x ~ I  l 
= [T2(x)  if x~I2 

The Pe r ron-Froben ius  opera tor  looks like (5); now the summat ion 
runs over the two branches of  T. The appropr ia te  cone of functions is 
defined by the relation 

f g(x) 
cr = ~g e C,O) I Vx, y e [0, 1 ], g(x) > 0; ~< e a l x  - 

[ g(Y) J 
(6) 

The functions g ~  c#,, obey a "logarithmic Lipschitz" condit ion with con- 
stant a. The Hilbert  metric O associated to ~ looks as follows. 
For  each f ,  g e c#~ 

(e~ g(x))(e al ..... If(v) -- f(u)) 
O(f,  g) = In sup 

.,',y~ [o. 1] (e~'tx-Yif(Y)--f(x))( eal ..... Ig(v) -- g(u)) 
u,t,E[O,l] 
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The following two statements ensure the applicability of Theorem 5.1. 

Given a E (2-1, 1 ), ~<g. c ~g~ provided Statement A. 
D/( cr -- ).-1),'where 

") - - I  
D =  sup D~.7"/-' 

.,-~ t0.1 ] DxT~- 
i E  {1 ,2}  

Statement B. We have 

a>~ 

l + a  
zl = diam(Cg~o) = 2 In + 2aa 

l - o r  

Thus V f, g ~ e.g. 

with 

O( 7"f, 7"g) <~ AO(f, g) 

A-tanh( ) 
In this case Lemma 5.2 can be applied, because for each g~, 

gee C(~ 1]), --g~ ~g2%g~ implies --g~(x) <~g2(x) <~g~(x), that is, 
[gz(x)[<~g~(x), for each x e [ 0 ,  1]. Consequently, for each L ? norm, 
Ilgz lip <~ Ilg~ lip. 

Let g~  C(~ 1]), jolg= 1, and g~Cg. , where a ,  and a ,  satisfy the 
conditions of Statement A. 

Since j~ T"g = I~ g = 1, 

117""+"'g - 7""gill <~exp[O(T"+"g, 7""g)] -- 1 

<~exp[A"-~O(T(T'g), T g ) ] -  1 ~< [ exp(AA- ' ) ]  AA"- '  

This means that { 7"'g} is a Cauchy sequence in L';  in addition, { 7""g} are 
equicontinuous; thus the limit ~o.=l im . . . .  ~"g exists and q~. is the 
density of the unique invariant measure absolutely continuous with respect 
to the Lebesgue measure. 

The following theorem--being the consequence of the preceding con- 
siderations--is slightly more general than the exponential correlation decay 
for smooth functions. 

Theorem 5.3. There exist K, r e R  + such that for each 
f e L ~ ( [ 0 ,  1]), g e  C(~I([0, 1]) with Jo~g= 1 

f ( T " ( g ( x ) ) ) d x -  f (x )  cp,(x) <~gllf[l~(llgll~+rllg'llo~.)A" 
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5.2. The Anosov Map 

For the definition see Section 2. Here we add only one construction to 
it, which can be done due to the uniform transversality of stable and 
unstable vectors. 

There exists a bundle of cones {Cr t in the tangent bundle [i.e., 
(g(x) c ~ . J t ' ]  strictly invariant [i.e., Dx T-~C~(x) c int ~ ( T - i x )  w { 0} ] 
and continuous. C#(x) can be a domain between two straight lines in ~ . ~ '  
defined by the vectors [v"(x)+vS(x)]/2 and [vS(x)+vU(x)]/2; here we 
assume that IIv"(x)ll = IM(x)ll = 1 and the expanding eigenvalue 2 (x )>0 .  
We can suppose that 

inf [IDxT-lvll >12 

sup [Iv-wl[ .<�89 

Ilvll = Ilwll = 1 

maybe for a 2 less than that in Definition 3.1. 
The appropriate cone of functions will be defined by a logarithmic 

Lipschitz condition similar to (6) imposed on integral means of test func- 
tions defined on expanding curves. The tangent vectors to these auxiliary 
curves ~,eF~ at every x belong to the expanding cone CO(x) and have 
bounded curvature: 

F6 = { y c ~ / I  6 ~< length(y) ~< 2& Yx e ~, , / (x)  c r Ix,(x)l < H} 

The test functions defined on y e F~ obey a logarithmic H61der condi- 
tion with exponent ve  (0, 1/2]; they form a cone, too: 

0 "f(x),f(y) <~e "atx'yr } (7) ~ ( ? )  = [ f ~  C~~ I f >  

where d means the arc length distance along ?. The explicit formula for the 
Hilbert metric Py(fl,fz) on ~ ( ? )  can be written, as for O(f, g). Focusing 
on the main ideas only, we omit its exact form. 

Now we are in the position to introduce the cone of functions for 
which the contraction principle will be applied: 

cdb,~= {geC'~ l V,~F,~, Vxey, Vff l , fze~(,)  f gf>O; 

f2(x) I"gf~ ~ebPr'f"f"~; IID"glI~<~c inf ~'fg~ 
f , (x )  ~rgf2 y~r~ Iyf J 

f ~  ~ a (  Y} 

By D" we mean the derivative in the unstable direction. 
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Due to condition (7), the inequality I>. g f >  0 does not imply the non- 
negativity of g: the Dirac delta function cannot be approximated with 
arbitrary accuracy by functions fe@a(?). The second inequality in the 
definition of the cone ~b,,, is the "weak" variant of the second inequality in 
the definition (6) of cga. 

The following fundamental lemma ensures the application of the con- 
traction principle. 

L e m m a  5.4. Let ~ <~ ~o; then there exist N ,  ~ N and A e R + such that 

diameter(TU*Cgb.~) <~ A < oo 

The proof of this lemma uses the mixing property of T, which provides 
that for every y ~ F~ there exists a natural N such that TNy has a sub- 
interval ?1 sufficiently close to y. The necessary estimates are based on the 
absolute continuity of the canonical projection n s between ~ and ?~. In 
order to get the desired estimate, we should assume that the F~ is a family 
of smoothly varying curves y. 

Lemma 5.2 does not apply to the Hilbert metric defined by the cone 
~gb.,.; therefore some extra effort is needed to prove the following result. 

T h e o r e m  5.5. There exist K>O and r > O  such that, for each 
g, f e C~l)( J/I), 

f //fT"g- f af <. K IIgll, llflI, A" 

with [Ihll, = [ , / I h l  + r  [Ih'll~. 

The result can be obtained using Markov partitions, but Liverani over- 
comes this difficulty by construcing two series of quasipartitions obeying 
much milder conditions than Markov ones. 

5.3. The U H S  M a p  

The UHS map T was also defined in Section 2. We suggest that the 
reader keep in'mind one of the examples for Chernov's PLH map. The con- 
tracting--under the action of T---cone cgsi,gul,r of functions belonging to 

C I~ j /z/ y T",9 ~  n L l ( J l )  
\ kn = 0 

will be defined analogously to ~gb.,.. 
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N o w  the map T can break up curves 7 e F 6  into arbitrarily small 
pieces; therefore the definition of  the cone should maintain short curves, 
too. This requires the introduct ion of  another  triplet of  test functions, 
defined on curves I t  Fin,  I I I <  J. We do not burden the reader with a com- 
plicated formula defining (~'singular; we FOCUS attention on a crucial point 
only: one of  the tree extra conditions is of  the type 

Ihgf31 
~< const  �9 dJ ~ -~ III r 

f3(Y) 

where const depends only on g, d is a new parameter  of  the cone, and 
0 < ~ < 1  is the exponent  in (2). This means that an integral can be 
estimated by some power smaller than 1 of  the length I~'iI of  its domain  of  
integration, when ly, I is arbitrarily small. The weakness of  the condit ion 
imposed on g ~ c'gsi,gu~ar enables Liverani to control  the speed of  the mixing 
for the squares entering Sinai's fundamental  lemma, and to prove the 
exponential correlation decay for each g, f e  CI~I(,////) as in Theorem5.5.  
The main steps are the same as in the p roof  of  the smooth  case, but the 
estimates are much more  complicated. 
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